Lesson 2-7: Solving Equations Involving Absolute Value

WHAT IS ABSOLUTE VALUE?

In operations with integers, **absolute value** is important. This is the value of a number when we ignore the positive or negative sign. Another way to think of absolute value is that it is a number's distance from zero on the number line, in either direction. The absolute value of any number n is written $n \mid n$ and is **always positive**.

Labsolute value notation

For example, let's look at the equation |x| = 4. This means that the distance between 0 and x on a number line is 4.

4 units 4 units

X=4,-4

Before we start working on solving absolute value equations, let's review how to evaluate absolute value expressions.

EXAMPLE 1

Evaluate |m + 6| - 14 if m = 4.

Plug in 4 for m: $= \left| \frac{4}{} + 6 \right| - 14$

Do what's inside the absolute value: = |10| - 14

Do the absolute value: = 10 - 14

Simplify: = -4

EXERCISE 1: Evaluate 23 - |3 - 4x| if x = 2.

always do PEMDAS

→ blank

EXERCISES Solve each equation. Then graph the solution set.

2.
$$|y + 2| = 4$$

4.
$$|n+7|=5$$

5.
$$|3z - 3| = 9$$

Case 1 case 2
$$|5|=5$$
 $|-5|=5$ $|-5|=5$ $|-5|=5$ $|-7|=5$ $|-7|=7$ $|-7|=7$ $|-7|=7$ $|-7|=7$

$$\frac{\text{Case 1}}{|8|=8}$$

$$\frac{2+-1}{2}$$

$$\frac{2+-1}{2}$$

$$\frac{2+-1}{2}$$

$$\frac{2+-1}{2}$$

$$\frac{2+-1}{2}$$

$$\frac{2+-1}{2}$$

$$\frac{\text{Case 2}}{|-8|=8}$$

$$2t-4|=-8$$

$$2t=-4$$

$$2t=-4$$

$$(t=-2)$$